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The ordering kinetics of directed assembly of cylinder-forming diblock copolymers is investigated
by cell dynamics simulation of the time-dependent Ginzburg–Landau theory. The directing field,
mimicking chemically or topologically patterned surfaces, is composed of a rectangular array of
potential wells which are attractive to the minority blocks. The period of the templating fields is
commensurate with the hexagonal lattice of the block copolymer domains. The ordering kinetics is
described by the time evolution of the defect concentration, which reveals that the rectangular field
of [1 m] for a given density multiplication has the best directing effect, and the reversed case of [m
1] has the worst. Compared with a hexagonal directing field, the rectangular field provides a better
directing efficiency for a fixed high density multiplication. The difference of the directing effect can
be understood by analyzing the ordering mechanisms in the two types of directing fields. The study
reveals that the rectangular pattern is an alternative candidate to direct block copolymer assembly
toward large-scale ordered domains. © 2011 American Institute of Physics. [doi:10.1063/1.3572266]

I. INTRODUCTION

Block copolymer (BCP) lithography, by taking advan-
tage of the BCP ability to self-assemble into ordered mi-
crostructures, has received abiding interest by researchers in
chemistry, physics, materials science, and nanotechnology.
The BCP lithography technique has the potential to produce
high-density multiplication of periodic patterns by directed
assembly of BCPs on patterned substrates. Therefore BCP
lithography is viewed as a promising technique to overcome
the intrinsic limitation of standard photolithography, and to
decrease the cost of e-beam lithography of sub-30-nm pat-
terns which is required for improved data storage and com-
puting speed in semiconductor technologies and other ad-
vanced materials.1–5 Furthermore BCPs, via the change of
their architectures, can self-assemble into a variety of or-
dered structures.6 This feature enriches the application of
BCP lithography.

For the purpose of practical application in high-
performance functional materials, it is desirable that the
BCP patterns possess long-range order and uniform domain
shapes which can hardly be achieved by uncontrolled BCP
self-assembly in bulk. The reason is that the equilibrium
structure competes with a multitude of metastable morpholo-
gies that have a minimally higher free energy, as well as the
unavoidable presence of defects. Typical differences in free
energy between a stable morphology and alternative structure
are on the order of 10−3kB T per macromolecule (where kB T
denotes the thermal energy scale). This small free energy
difference makes it hard to obtain long-range order in a
free-standing system. At the same time, it provides the oppor-
tunity of using external interactions to stabilize metastable
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morphologies, particularly in thin films. A number
of schemes, including shear,7 electric fields,2 thermal
gradients,8, 9 solvent annealing,10 flow,11 graphoepitaxy,12–14

and chemical prepatterning,15, 16 have been proposed to im-
prove the ordering of BCP domains. Among these different
possibilities, the graphoepitaxy based on prepatterned tem-
plates is one of the most used techniques to form large-scale
perfectly ordered patterns in thin films. Recently significant
advances have been achieved in the manufacturing of large-
scale ordered patterns by means of directed assembly of BCPs
on patterned substrates.17–21 Ruiz et al. used a sparse chemical
patterns to direct BCPs to form a fourfold density multi-
plication of perfectly ordered hexagonal cylinders.17 With
substrates decorated by hexagonally arranged nanoposts,
Bita et al. realized another effective graphoepitaxial method
to direct the BCP assembly of thin films,18 achieving up to
about 21-fold density multiplication. In addition, great efforts
have been dedicated to fabricate many complex patterns to
expand the applications of BCP lithography.22–26

To obtain perfectly ordered hexagonal patterns (cylinder
or single-layer sphere) in thin films, a sparse hexagonal tem-
plate is often used to direct the BCP assembly. In our pre-
vious work, the ordering kinetics of the BCP assembly di-
rected by periodic two-dimensional (2D) hexagonal fields was
investigated by cell dynamic simulation (CDS) of the time-
dependent Ginzburg–Landau (TDGL) theory. Our results re-
veal that the ordering effect is efficient when the length ratio
of Ls/L0 is an integer which is not larger than four. In this
case the defect concentration decreases exponentially with
time. Here the two feature lengths Ls and L0 are the distance
between the potential wells and the cylinder-to-cylinder dis-
tance of the bulk BCP phase, respectively. When Ls/L0 = 6,
the field does not have an obvious directing effect on the or-
dering behavior and the evolution of defect concentration with
time is similar as that in the bulk. The case of Ls/L0 = 5 is
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intermediate between those of Ls/L0 = 4 and 6. The evolu-
tion of defect concentration follows a multistep power law
instead of the exponential-decay behavior, but the absolute
value of power-law coefficient increases with time, which is
opposite to the case of Ls/L0 = 6. This suggests that the di-
recting field still has significant effect. Therefore it is con-
cluded that the highest density multiplication predicted from
our simulations is not larger than 25-fold with the hexagonal
array of periodic 2D fields. This conclusion is well consistent
with available experimental observations. In experimental
cases of chemically prepatterned surfaces, the film thickness
plays a crucial role to form perpendicularly standing cylinders
on substrates (usually chosen as around 1.6L0).19, 20, 27 By
carefully controlling the film thickness, fourfold density mul-
tiplication can be achieved by means of chemically patterned
templates,17, 19, 27 and even a multiplication as high as nine-
fold has been claimed.20 Higher multiplication has not been
reported by this technique, but by an alternative strategy, i.e.,
templates prepatterned by hexagonal array of nanoposts to di-
rect the formation of single-layer spheres in thin films.18 It is
reported that the multiplication is as high as about 21-fold.
Compared to chemical-pattern surfaces, the array of posts has
a 3D directing effect not only on the 2D surface, but also along
the normal direction of the films.

In another word, the hexagonal field pattern is replaced
by another field with different symmetry, such as rectangular
potential wells, what will happen with the directing effect?
In the present work, we focus on the investigation of the or-
dering kinetics of the formation of cylinders by directed BCP
assembly on a rectangular array of periodic surface field. To
ensure that the rectangular field array is commensurate with
the intrinsic hexagonal array of BCP domains, two periods
to describe the rectangular 2D field, Lx

s and L y
s , have to be

related to L0 by some special algebraic expressions. In what
follows we choose Lx

s = l
√

3L0 and L y
s = mL0 (Fig. 1), and

we use [lm] to denote this rectangular array (the square brack-
ets are used to differ from the angular brackets for hexag-
onal field arrays). The corresponding density multiplication
of [l m] (abbreviated as DM), also the ratio between the BCP
microdomain number to the field-spot number, is DM = 2 ml.
Our previous work suggests that the CDS method of TDGL is
highly efficient to give qualitative results on the collective or-
dering kinetics of the directed assembly by patterned surface,
which is useful to judge the relevant directing effect. There-
fore the same simulation scheme is applied for the present
study. It is assumed that the BCP formed domains are per-

FIG. 1. Schematic plot of periodic rectangular array of potential wells on
a substrate. The blue color indicates the regions where the minority block
is preferred, and the other regions do not have preference to any block. Each
rectangular cell is denoted by two periods of Lx

s and L y
s on x and y directions,

respectively.

pendicularly standing cylinders or single-layer spheres in thin
film with appropriate film thickness. Thus the system is sim-
plified to be 2D, and the patterned surface is modeled as a
periodic 2D fields.

II. MODEL AND THEORY

We consider an incompressible asymmetric AB diblock
copolymer with equal monomer size and with polymeriza-
tion of NA and NB for A and B blocks, respectively. Each
copolymer has a volume fraction f = NA/N of the A block,
where N = NA + NB is the total polymerization of the chain.
The local monomer densities of A and B components are de-
noted as φA(r) and φB(r), respectively. The density difference,
φ = φA − φB , is chosen as the order parameter to describe
the phase separation and the pattern formation of the diblock
copolymer. The model free energy can be written as a func-
tional of φ which consists of three parts: short-range, long-
range, and that of the external field, Hext(r):28

F[φ] = FS[φ] + FL [φ] +
∫

drHext(r)φ(r). (1)

The short-range part FS is the usual Ginzburg–Landau free
energy and is given by

FS[φ] =
∫

dr
{

D

2
[∇φ(r)]2 + W (φ)

}
, (2)

where D is a positive constant, W (φ) is the local interaction
contribution, and it can be specified by its derivative:

dW (φ)

dφ
= −A tanh(φ) + φ, (3)

with A > 1. The long-range contribution is originally pro-
posed by Ohta and Kawasaki to alter the phase separation
from macroscopic in A/B blends to be microscopic in AB di-
block copolymers.28 The long-range part is expressed as

FL (φ) = α

2

∫
dr

∫
dr′G(r − r′)δφ(r)δφ(r′), (4)

where δφ(r) = φ(r) − φ̄, and φ̄ = 2 f − 1 is the average
value of φ(r) over the 2D space. In the above expression,
G(r − r′) is a Green function, which can be conveniently
specified by

− ∇2G(r − r′) = δ(r − r′). (5)

The positive coefficient α in expression (4) is proportional to
1/N 2 f (1 − f ), and is inherent to the block copolymer.28–30

Hext(r) in the last term of Eq. (1) is the external field mim-
icking the chemically patterned surfaces. A potential-well
function, similar as that used in our previous work,21 is
used to describe the surface interactions on the two compo-
nents around the potential well at position Ri, j = (i Lx

s , j L y
s )

(i = 0, 1, . . . , ns
x and j = 0, 1, . . . , ns

y):

Hext(r) = −1

2
V0 { tanh [(−|r − Ri, j | + σ )/λ] + 1} (6)

for |r − Ri, j | < 2σ and otherwise Hext(r) = 0. The magni-
tude V0 indicates the strength of the field, σ measures the
radial size of each potential well, and λ determines the steep-
ness of the potential-well shape. Two integers, ns

x and ns
y , are
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the repeating numbers of the periodic rectangular 2D fields on
x and y directions, respectively.

With the above free-energy functional, the dynamics of
the density evolution can be described by the Cahn–Hilliard
model (Model B):31

∂φ

∂t
= M∇2 ∂ F[φ]

∂φ
+ η(r, t), (7)

where M is a phenomenological mobility coefficient, set as
M = 1, and η(r, t) is a random noise term, with zero aver-
age and a second moment of 〈η(r, t)η(r′, t ′)〉 = −η0 M∇2δ(r
− r′)δ(t − t ′), here η0 is the noise strength.

Follow our previous work,21 we empirically choose these
parameters as D = 0.5, f = 0.35, A = 1.30, α = 0.02, V0

= 0.04, σ = 0.15L0, and λ = 0.5. The cylinder-to-cylinder
distance, L0, for this choice of parameters, has been deter-
mined as L0 = 9.20 lattices in our previous work. The val-
ues of ns

x and ns
y together with those of Lx

s and L y
s determine

the simulated box sizes of Nx = ns
x Lx

s and Ny = ns
y L y

s , and
therefore they are chosen to ensure that more than 104 BCP
domains are formed in each simulated sample. The standard
CDS scheme is applied for the Laplacian discretization with
periodic boundary conditions imposed on each direction, and
the forward Euler algorithm is applied for the time integration
with time step of 	t = 1.

III. RESULTS AND DISCUSSIONS

From our previous work of hexagonal directing field, it is
found that the time evolution of defect concentration is a con-
venient and efficient quantity to evaluate the directing effect
of different field arrays. For denser array of directing hexag-
onally packed potential wells (〈30〉 or 〈40〉 with Ls/L0 = 3
and 4, respectively) the defect concentration decays exponen-
tially in time, indicating that large-scale ordered patterns can
be obtained by BCP assembly under the direction of the field.
For sparser hexagonal field of 〈50〉, the time evolution of de-
fect concentration does not decay exponentially, but follows a
multistep power law with larger and larger power-law coeffi-
cient as time. This is faster than the bulk system. This suggests
that 〈50〉 still has some directing effect on BCP assembling
process, however, it would take a long time to obtain perfect
pattern, or to observe small amount of defects in a short time.
When the DM is increased further, DM ≥ 62, the directing
effect of the field is negligible because the defect evolution
is similar as that of bulk system. To evaluate the directing
effect of the rectangular field we first computed defect con-
centration as function of time for various field arrays of two
fixed density multiplications of DM = 12 and DM = 16. For
both cases, there are four candidate arrays by varying one of
the two integers of l and m for fixed DM = 2 lm. The results
of DM = 12 and DM = 16 are presented as linear-logarithm
plots in Figs. 2(a) and 2(b), respectively. Each set of data is
calculated by averaging over 10–16 independent simulated
samples. Obviously the directing effect described by defect
evolution is dependent on the field array for a given DM. In
Fig. 2(a), the defect concentration of [1 6] has the fastest de-
creasing speed as time, i.e., exponential-decay (highlighted
by the green solid line), while that of [6 1] has the slowest

FIG. 2. Defect concentrations of cylinders assembled on patterned templates
as function of time. Figures (a) and (b) are results of four rectangular fields
for each of density multiplications of 12 and 16, respectively. In (b), the filled
symbols denote the results of periodic hexagonal field with the same density
multiplication of 16 from Ref. 21.

one. The time evolutions of defects of [2 3] and [3 2] are
intermediate between those of [1 6] and [6 1], and that of
[2 3] is slower than that of [3 2]. For DM = 16, a similar fea-
ture is observed with the defect evolution in Fig. 2(b). The
defect evolution of the hexagonal 〈40〉-field with the same
DM, which is near exponential-decay, is shown as a compar-
ison. It can be seen that the fastest evolution of [1 8] among
these rectangular fields is slower than that of 〈40〉, and devi-
ates from the exponential relation at the later evolving stage.
The simple exponential relation indicates that the correlation
of defects is weak, and thus they are annihilated simultane-
ously. On the other hand, the intermediate defect evolutions
between the exponential law and the multistep power law
in the bulk indicate that some of defects are connected to
form a large grain boundary which takes longer time to be
eliminated.

From the two sets of results in Fig. 2, it can be concluded
that the type [1 m] field has the best directing effect, and the
reverse type of [m 1] has the worst one. To understand the
ordering mechanism of BCP microdomains under these dif-
ferent types of field, we first examine the monomer density
plots of [1 6] (left column) and [6 1] (right column) at t = 104
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FIG. 3. Monomer density plots of cylinder patterns directed by periodic fields of [1 6] (left column) and [6 1] (right column) at t = 104 (upper row) and t = 105

(bottom row). Each figure exhibits a 5122 portion of the entire sample. Insets give the Fourier spectrums of the density.

(upper row) and t = 105 (bottom row) together with their cor-
responding Fourier spectrums in Fig. 3. The comparison of
the Fourier spectrums between [1 6] and [6 1] for t = 105

indicates unambiguously that the pattern of [1 6] [Fig. 3(a2)]
has better degree of order than that of [6 1] [Fig. 3(b2)]. In ad-
dition, the corresponding orientation distributions of local do-
main lattice are calculated and are presented in Fig. 4 (details
of calculation are found in Ref. 21), where different colors
indicate grains with different lattice orientations. The com-
mon feature of [1 m] and [m 1] fields is that their potential-
well positions are lined up with distances of

√
3L0 and L0,

or, with row-to-row distance of mL0 and column-to-column
distance of m

√
3L0, respectively. Of course, any type of [l m]

can be seen as a set of rows or columns of potential wells.
This feature suggests that the potential-well distance in each
row or column (denoted as ds) and the row-to-row or column-
to-column distance (denoted as D) are the two main factors
influencing the ordering kinetics. Smaller value of ds is ben-
eficial to direct layer by layer assembly of cylinders starting
from the aligned preformed cylinders on potential wells to-
ward two side directions. For example, it is more obvious to
observe the layer by layer formation of ordered cylinders in
Fig. 3(b1) than (a1). Furthermore, we can see stripelike pat-
terns along the y-direction in Fig. 4(b1), but not in Fig. 4(a1).

However, for a given DM, smaller ds corresponds to larger D.
Larger D in Fig. 3(b1) indicates that there is more free space
between two neighbor columns to form large grains with mis-
matched orientation from that of the field array. The defects
located on the boundary of those large grains are difficult to be
annihilated, particularly those with large angle of mismatched
orientation (red grains in orientation distribution maps). At
t = 105, we find that there are more this type of grains in
Fig. 4(b1) than 4(a1), resulting in a slower defect annihilation
of [6 1] than [1 6].

In order to understand the directing effect of rectangu-
lar fields further, we present the orientation distributions of
[1 8] (first row) and [8 1] (second row) together with those
of the hexagonal field of 〈40〉 (third row) at three times of
t = 104, 105 and 2 × 105 (from left to right) in Fig. 5. The av-
erage defect concentrations are (22.2 ± 0.7)%, (3.9 ± 0.5)%,
and (0.8 ± 0.3)% for [1 8], (19.9 ± 0.5)%, (8.0 ± 0.4)%, and
(5.1 ± 0.5)% for [8 1], and (24.1 ± 0.7)%, (1.7 ± 0.5)%, and
(0.14 ± 0.11)%, respectively. The comparison of results be-
tween [1 8] and [8 1] also supports the conclusion obtained
in the above paragraph. In addition, by comparing defect evo-
lutions between the directing fields [1 8] and 〈40〉, it is help-
ful to understand the difference of directing mechanism be-
tween rectangular field and hexagonal field. At the early stage
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FIG. 4. Distributions of local lattice orientation of the entire block copoly-
mer domains in Fig. 3. The colors of the spectrum indicate the range of lattice
orientation from 0 to 60 degrees.

of t = 104, there is a small difference of orientation distribu-
tion between the two settings in that the proportion of rela-
tive large grains with large angle of mismatched orientation
in [1 8] is higher than that of 〈40〉. Compared with the rect-
angular [1 8]-field, the potential wells in the hexagonal 〈40〉-
field are more uniformly distributed in the entire sample. As
shown in our previous work,21 the density of potential wells
in 〈40〉 is high enough such that they tend to stop the for-
mation of large grains with mismatched orientation. In the

FIG. 5. Orientation distribution plots for the density multiplication of 16.
From top to bottom, the periodic field is [1 8], [8 1], and 〈40〉, and from left
to right, the corresponding time is t = 104, 105, and 2 × 105, respectively.

rectangular [1 8]-field, the nonuniformity of potential wells
gives rise to more space free of the directing field, resulting
in a larger possibility to form large grains. This point can be
seen more clearly from the orientation distributions at t = 105

where only small amount of large grains are remained. At
t = 2 × 105, the entire sample with the 〈40〉-field is almost
perfectly ordered. In contrast, there are still a number of de-
fects remaining in the sample with the [1 8]-field. From the
density plots, it is found that most of these defects are in the
form of a pair of dislocations, each of which is composed of
a pair of fivefold and sevenfold defects. A typical example

FIG. 6. Small portion of density plots around the locations of a pair of dislocations for the rectangular [1 6]-field. From (a) to (h), the time is t = 2 × 105,
2.2 × 105, 2.4 × 105, 2.6 × 105, 3.2 × 105, 3.4 × 105, 3.6 × 105, and 3.8 × 105, respectively. In (a), the two dislocations are indicated by short color lines, and
the Delaunay triangles around the bottom one are plotted. Black and white circles indicate where a new domain is going to appear and where a new domain just
comes out, respectively.
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of the pair of dislocations is presented as a series of time-
evolving density plots for one of running samples with the
[1 6]-field in Fig. 6. The time steps of these figures from
(a) to (h) are t = 2 × 105, 2.2 × 105, 2.4 × 105, 2.6 × 105,
3.2 × 105, 3.4 × 105, 3.6 × 105, and 3.8 × 105. To focus on
the defect evolution, only the area surrounding the defect lo-
cations is shown. In Fig. 6(a), the pair of dislocations are in-
dicated by two short color lines, and the Delaunay triangles
around one of them are plotted. It is interesting to see that
the two dislocations are located near the bottom row and the
upper row of potential wells, respectively. Thus their distance
is about 5L0 which is close but smaller than the row-to-row
distance of 6L0. This distance is a key factor to determine the
life time of these defects. The presence of the periodic field
results in that only small portion of lattice orientation of BCP
domains is influenced by the small amount of defects (the re-
gion inside the red rectangle). Within this region, five BCP
domains are needed to annihilate these defects. In Fig. 6(b),
these neighboring domains of the dislocations are rearranged
to allow the addition of new domains. In the black circle of
Fig. 6(b), one new domain is added to form fivefold defect
in the white circle of Fig. 6(c). At the same time, the black
circle of Fig. 6(c) will allow the addition of another new
domain. Defect annihilation proceeds by starting from the
two dislocations and propagating toward each other. In this
sense, the distance of the dislocations has significant influ-
ence on the local ordering time. Therefore, increased line-to-
line distance of the potential wells increases the possibility not
only to form large grains, but also to produce pairs of disloca-
tions with large distance, and thus slowing down the ordering
process.

Although the ordering process of the rectangular [1 8]-
field is slower than that of the hexagonal 〈40〉-field, it exhibits
an exponential relation when t ≤ 2 × 105 at which the grains
with mismatched lattice orientations are diminished [see
Fig. 2(b)]. After that, a number of pairs of dislocations with a
wide range of life times remain, therefore the ordering process
is relative slow. Nevertheless, the rectangular [1 8]-field is still
efficient for directing BCP assembly. It is worthy to examine
the directing effect of other rectangular fields of the type of
[1 m] with larger DM. In Fig. 7, the defect concentrations
as function of time for m = 10, 12, 14, 16, and 18, together
with those of 〈50〉 (red line) and 〈60〉 (blue line), are shown
as double-logarithm plots. At the early stage, the defect con-
centration approaches a power law with a power coefficient
of 1/3 for large values of DM, which is similar as that of bulk
system. This suggests that the ordering kinetics is dominated
by the formation of large grains, so that the ordering process
becomes slow as DM increases. However, it is surprising that
the ordering processes of m = 14 is faster than that of 〈50〉
while the former case has larger DM than the later one. The
same feature is also seen from the comparison between the
fields of [1 18] and 〈60〉, both of which have the same den-
sity multiplication of DM = 36. If we view the function of
defect concentration as a multistep power law, the coefficient
becomes larger and larger, which is different from that of 〈60〉.
This suggests that it is more likely to obtain well-ordered pat-
terns, or at least, to obtain patterns with lower-density defects,
by the direction of [1 18] than by that of 〈60〉.

FIG. 7. Time evolution of defect concentrations for the type [1 m] of rectan-
gular field, where m = 10, 12, 14, 16, and 18. The red and blue solid lines
are the results of hexagonal field, 〈50〉 and 〈60〉, respectively. The green solid
line indicates the relation of 1/3 power law.

To demonstrate the different ordering mechanisms, we
plot both orientation distributions of [1 18] (upper row) and
〈60〉 (bottom row) at t = 105 and t = 106, respectively, in
Fig. 8. Obviously the grains of the sample with the [1 18]-
field are much larger than those of the samples with the
[1 8]-field, and when t = 105, these grains have stripelike dis-
tribution along the x-direction. The space between two neigh-
boring rows of the potential wells is large enough to form
a number of large grains with large mismatched angle of
orientation from the field lattice, but the layer-by-layer pre-
formed domains directed by the rows of the potential wells
reduces the grain size along the normal direction of these

FIG. 8. Orientation distribution plots for the rectangular [1 18]-field (upper
row) and the hexagonal 〈60〉-field (bottom row). Left and right columns cor-
respond to evolving time, t = 105 and t = 106, respectively.
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rows. These grains can be diminished by the propagating of
domain layers which is a steady kinetics because the ordered
region has overwhelmed predominance on these grains. How-
ever, the situation in the samples of 〈60〉 is very different. As
the potential-well distance is as large as 6 L0, which is larger
than twice of the average dislocation-to-dislocation distance
of about 2.5 L0, these potential wells have negligible influ-
ence on the directed BCP assembly. Thus the domains around
each potential well have almost independent orientation, and
those domains with similar orientation will merge with each
other to form larger grains, as shown by the red grains evolv-
ing from t = 105 to 106. These large grains are difficult to
be eliminated because their total size is comparable with that
of those grains of consistent orientation with the field array.
In our results, the difference of the average defect concentra-
tions at t = 105, (10.6 ± 0.3)% for [1 18] and (11.5 ± 0.5)%
for 〈60〉, is quite small. While t = 106, (4.5 ± 1.1)% for
[1 18] and (6.9 ± 0.5), the difference is increased.

Very recently, Tang and Ma studied BCP assembly on
patterned templates decorated by periodic rectangularly ar-
ranged nanoposts using 2D real-space calculations of the self-
consistent mean-field theory (SCFT).32 With this equilibrium
theory, they were able to observe the final equilibrium struc-
tures but the knowledge of the ordering process is lacking in
the SCFT approach. These authors observe perfectly ordered
cylinders/spheres under the direction of rectangular post array
with as large as 34-fold density multiplication, which corre-
sponds to m = 17 in the [1 m] type of rectangular field. This
observation is not contradictory with our results in Fig. 7. In
their model, the post array has stronger directing effect than
the pure periodic field in our model because of the presence
of the geometrical confinement of these posts. In addition,
the equilibrium results are sensitive to the initial conditions
and the iterating process when solving SCFT equations. Our
results of ordering kinetics are well complementary to those
from their equilibrium calculation.

IV. CONCLUSIONS

The ordering kinetics of cylinder-forming diblock
copolymer assembly under the direction of periodic rectangu-
lar fields has been studied by cell dynamics simulations of the
time-dependent Ginzburg–Landau theory. A two-dimensional
rectangular field, denoted as [l m], consists of potential wells
with the distance of l

√
3L0 along the x-direction and that

of mL0 along the y-direction, where L0 is the cylinder-to-
cylinder distance in bulk system. Our results of ordering ki-
netics, described by the time evolution of the defect concen-
tration, reveal that the rectangular field of [1 m] for a given
density multiplication has the best directing effect, and the re-
versed case of [m 1] has the worst. Compared with the case
of hexagonal fields, the rectangular field has a worse direct-
ing effect for a fixed low density multiplication, however, its
directing effect becomes better for a fixed high density mul-
tiplication. For example, the directing effect of the rectangu-
lar [1 8]-field is worse than that of the hexagonal 〈40〉-field
for the density multiplication of 16. The reversed situation is
that the [1 18]-field has a better directing effect than the 〈60〉-
field for the large density multiplication of 36. The hexago-

nal 〈60〉-field has negligible effect on the directing of BCP
assembly. In another word, a low-density of potential wells
cannot effectively decrease grain sizes, or direct local grain
orientations to be commensurate with its inherent orientation.
The comparison between its evolution of defect concentration
and that in uniform films indicates that the 〈60〉-field has lit-
tle directing effect on the pattern formation. However, for the
rectangular [1 18]-field, all of the potential wells are aligned
in rows with a distance of

√
3L0, and each row has the abil-

ity to direct layer-by-layer ordering of BCP domains. These
rows restrict grain sizes along the normal direction of rows.
In addition, the layer-by-layer ordering has a steady propa-
gating speed to invade into those grains located intermediate
between rows, which have mismatched orientations from the
field lattice. The most important conclusion from the current
study is that the rectangular pattern is alternative candidate to
direct block copolymer assembly toward large-scale perfectly
ordered domains in experiments.
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